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CHAPTER ONE

Introduction

The irregular and unpredictable time evolution of many nonlinear
systems has been dubbed ‘chaos.’ It occurs in mechanical oscillators
such as pendula or vibrating objects, in rotating or heated fluids, in
laser cavities, and in some chemical reactions. Its central charac-
teristic is that the system does not repeat its past behavior (even
approximately). Periodic and chaotic behavior are contrasted in
Figure 1.1. Yet, despite their lack of regularity, chaotic dynamical
systems follow deterministic equations such as those derived from
Newton’s second law.

The unique character of chaotic dynamics may be seen most clearly
by imagining the system to be started twice, but from slightly different
initial conditions. We can think of this small initial difference as
resulting from measurement error, for example. For nonchaotic
systems this uncertainty leads only to an error in prediction that
grows linearly with time. For chaotic systems, on the other hand, the
CITOr grows exponentially in time, so that the state of the system is
essentially unknown after a very short time. This phenomenon, which
occurs only when the governing equations are nonlinear, is known as
sensitivity to initial conditions. Henri Poincaré (1854-1912), a promi-
nent mathematician and theoretical astronomer who studied dy-
namical systems, was the first to recognize this phenomenon. He
described it as follows: *, . . it may happen that small differences in the
Initial conditions produce very great ones in the final phenomena. A
small error in the former will produce an enormous error in the latter,
Prediction becomes impossible, and we have the fortuitous phenom-
enon’ (Poincaré, 1913).

If prediction becomes impossible, it is evident that a chaotic system

1

[T



Introduction o

Fig. 1.1 The damped,
driven pendulum can
exhibit both periodic and
chaotic motions, Here,
the angular velocity is
shown as a function of
time for the two cases,
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can resemble a stochastic system (a system subject to random external
forces). However the source of the irregularity is quite different. For
chaos, the irregularity is part of the intrinsic dynamics of the system,
not unpredictable outside influences,

Chaotic motion is not a rare phenomenon. Consider a dynamical
System described by a set of first order differential equations. Several
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necessary conditions for chaotic motion are that (a) the system has at
least three independent dynamical variables, and (b) the equations of
motion contain a nonlinear term, that couples several of the variables,
The equations can often be expressed in the form:

dxy/dt=F (x,,%,, - - -x,)
de/dt=F2(x15x27 v ',x,,)

dx;./dt=F.,(x1,xz, =5 830}

where n must be at least 3. Two examples of appropriate nonlinear
equations are: [t

fffv'éf"t\"

dxy/de=aox; + Bx; +yx,x, + - -+ dx,

dxy/de=0x; + fx, +ysinx, + - -+ dx, b & ol >
i Folr ) e Ffe gy 7 s T L‘

where a, B, 7, 6 are constants. In each case the nonlinear term couples
both x; and x,. Systems such as these are often chaotic for some
choices of the constants.

‘The fact that only three variables are required for chaos was
surprising when first discovered. We shall see that three-space is
sufficient to allow for (a) divergence of trajectories, (b) confinement of
the motion to a finite region of the phase space of the dynamical
variables, and (c) uniqueness of the trajectory. The nonlinearity
condition is perhaps less surprising. Solutions to linear differential
equations can always be expressed as a linear superposition of
periodic functions, once initial transients have decayed. The effect of a
nonlinear term is often to render a periodic solution unstable for
certain parameter choices. While these conditions do not guarantee
chaos, they do make its existence possible.

The nonlinearity condition has probably been responsible for the
late historical development of the study of chaotic systems. Despite
the fact that chaotic systems are deterministic and are described by
many of the long-known classical equations of physics, the develop-
ment of the subject itself is more recent. This circumstance may arise
from the fact that, with the exception of some first order equations,
nonlinear differential equations are either difficult or impossible to
solve analytically. Although it is sometimes possible to use linearized
approximations, the solution of nonlinear differential equations
generally requires numerical methods whose practical implemen-
tation demands the use of a digital computer. The first numerical
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study to detect chaos in a nonlinear dynamical system was that of
Lorenz’s model of convective fluid flow (Lorenz, 1963). Similarly, the
majority of the diagrams in this book are based upon the use of numerical
methods on a personal computer to solve nonlinear equations.

From these general comments on chaotic systems, we turn to the
physical system that is the focus of this work - the damped, driven
pendulum. The choice of the pendulum as a model system has strong
historical precedent in physics. Galileo postulated the constancy of
period for small amplitude oscillations of the pendulum from
observations of swaying lamps in the cathedral at Pisa, in 1581
(Robinson, 1921). He took up the problem of the relationship between
the period and pendulum length in his famous Dialogue on the Two
Principal World Systems in 1632, and in 1637 he suggested that the
square of the period was proportional to the length of the pendulum
for small oscillation amplitudes (Dugas, 1958). The pendulum also
served as a primary timing mechanism for clocks and as a method of
measuring variations in the earth’s gravitational field. As a peda-
gogical device the pendulum has long been a standard mechanical
example in introductory physics and classical mechanics courses.
Now, 400 years after Galileo’s initial work, the pendulum has again
become an object of research as a chaotic system. The references
scattered throughout this work attest to its popularity.

The damped, sinusoidally driven pendulum of mass m (or weight
W) and length [ is described by the following equation of motion:

d?e do )
mlaz—ﬁ-y i + Wsinf =Acos(wpt).

This equation expresses Newton’s second law with the various terms
on theleft representing acceleration, damping, and gravitation. The
angular velocity of the forcing, wp, may be different from the natural
frequency of the pendulum. In order to minimize the number of
adjustable parameters the equation may be rewritten in dimensionless
form as:

d26/dt? + (1/q)d6/dt + sinf = gcos(wpt)

where ¢ is the damping or quality parameter, g is the forcing
amplitude, not to be confused with the gravitational acceleration, and
op is the drive frequency. The low-amplitude natural angular fre-
quency of the pendulum is unity, and time is regarded as dimen-
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sionless. (This particular notation follows that used by Gwinn and
Westervelt. See for example, Gwinn and Westervelt (1986).) This
equation satisfies the necessary conditions for chaos when it is written
as a set of first order equations:

dw/dt = - (1/q)w —sinb +gcos¢
dé/dt=w
d¢/dt =wp.

The variable ¢ is introduced as the phase of the drive term. The
necessary three variables (w,0,¢) are evident, and the sinf and gcos¢
terms are clearly nonlinear. Whether the motion is chaotic depends
upon the values of the parameters g, wp, and gq. For some values the
pendulum locks onto the driving force, oscillating in a periodic
motion whose frequency is the driving frequency, possibly with some
harmonics or subharmonics. But for other choices of the parameters
the pendulum motion is chaotic. One may view the chaos as resulting
from a subtle interplay between the tendency of the pendulum to
oscillate at its ‘natural’ frequency and the action of the forcing term.
The transitions between nonchaotic and chaotic states, due to
changes in the parameters, occur in several ways and depend
delicately upon the values of the parameters.

A variety of analytic and computational tools may be used in the
study of chaotic systems. In Chapter 2 several of these are discussed.
The pendulum’s phase space and its properties are described, together
with the conceptual device known as the Poincaré section. Then, since
Fourier spectra are an indicator of chaotic motion, some elements of
Fourier analysis are outlined. Chapter 3 is a description of the
application of these and other techniques to the pendulum.

The driven pendulum would seem to be one of the simplest physical
systems. Yet its behavior is rich and complex. The study of its motion
can be facilitated by simple mathematical models formulated as
difference equations, that provide a discrete mapping of the system
from one state to another. Mappings have the advantage of being
conceptually simple and numerically efficient, and they may be used
as paradigms for various aspects of the pendulum motion. Chapter 4
contains discussions of three such maps, the logistic map, the circle
map, and the horseshoe map. We use them to provide insight into the
behavior of the pendulum.
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Chapter 5 is concerned with the geometric structure of the attractor
that describes the chaotic pendulum. The attractor, and its Poincaré
section, are fractal structures with noninteger dimensionality. Various
approaches to the calculation of fractal dimension are described.
Another geometric feature is the exponential divergence of the chaotic
trajectories on the attractor. The rate of this divergence is charac-
terized by Lyapunov exponents. The calculation of these exponents
and their relation to (a) the fractal dimension, (b) the dissipative
nature of the pendulum, and (c) the duration of predictable behavior
are also discussed.

Finally, in Chapter 6 a few general comments are made on the
relationship of chaotic behavior to other areas of physics. While
chaotic behavior occurs broadly, three areas are given brief descrip-
tions: fluid dynamics, chemical reactions, and lasers. The relation of
chaos to quantum mechanics and the connection of chaos with
irreversibility are also discussed briefly.

Two appendices present numerical aspects of this book. Appendix
A is a description of the Runge-Kutta algorithm used to solve the
pendulum differential equation. Appendix B provides brief descrip-
tions and listings of the computer programs used throughout the text,
and in the computer exercises given at the end of several of the
chapters. The listings utilize the language True BASIC'™ but they are
adaptable to any compiled BASIC or other high level language.
(Interpreted BASIC, which is typically delivered with current micro-
computers, is too slow for most of these simulations. The exceptions
are the mappings in Chapter 4)




CHAPTER TWO

Some helpful tools

In this chapter we discuss three mathematical constructs that are
generally useful in the study of dynamical systems: phase space, the
Poincaré section, and power spectra. Phase space is the mathematical
space of the dynamical variables of a system. The Poincaré section is a
‘snapshot’ of the motion in the phase space, taken at regular time
intervals. The power spectrum is computed using Fourier analysis to
display the frequency composition of the time variation of the
dynamical variables.

Phase space

The phase space of a dynamical system is a mathematical space with
orthogonal coordinate directions representing each of the variables
needed to specify the instantaneous state of the system. For example,
the state of a particle moving in one dimension is specified by its
position (x) and velocity (v); hence its phase space is a plane. On the
other hand, a particle moving in three dimensions would have a six-
dimensional phase space with three position and three velocity
directions. A phase space may be constructed in several different ways.
For example, momenta can be used instead of velocities. -

Let us focus the discussion on the pendulum and begin with the
familiar simple pendulum in the small amplitude approximation
where the restoring term, sinf, is taken as 6. (Recall that the
equations are written in dimensionless form for simplicity, with time
measured in units of the inverse of the natural frequency.) The

7
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Fig. 2.1 Phase diagram of
the linear pendulum. The
angular velocity, w, and
the angular displacement,
6, are the coordinate axes.

equation of motion is
d?6/de* +6=0.

With the addition of the angular velocity variable, w=d6/dt, this
linear, second order equation can be reduced to two first order
equations:

dw/dt=—0
and
do/dt =w.

In this way each dynamical variable has its own first order differential
equation. Without loss of generality, the initial conditions can be
chosen so that the solution becomes

0 =a;cost and w=a;sint

where {a;} represents the possible amplitudes of the motion. This
solution set gives the parametric curves for @ and 6, and one can
eliminate the time parameter to give a two-dimensional represen-
tation for differing values of a;. This diagram, shown in Figure 2.1, is

j -

a3
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Fig. 2.2 The noncrossing

. property of phase

trajectories. Crossing of
trajectories violates
uniqueness of trajectories
in a deterministic
dynamical system.

the appropriate phase space diagram (in this case a phase plane
diagram). Each value of a; yields a closed orbit of fixed energy. The
energy increases with the square of the radius a;. The orbit is usually
called a phase trajectory.

An important feature of the trajectory is that two trajectories
corresponding to similar energies will pass very close to each other,
but the orbits will not cross each other. This noncrossing property
derives from the fact that past and future states of a deterministic
mechanical system are uniquely prescribed by the system state at a
given time. A crossing of trajectories at time t would introduce
ambiguity into past and future states, thereby rendering the system
indeterminate. Such indeterminacy would contradict the assumed
uniqueness of the trajectory. Figure 2.2 shows the indeterminacy of
trajectories emanating from a hypothetical crossing.

Another important feature of the phase space of conservative
(constant energy) systems is the preservation of areas. This means that

. all the points found in a given area of phase space at one time move in

such a way that at a later time the area occupied by these points
remains the same. This feature is illustrated in Figure 2.3 and in
Examples 2.1 and 2.2.

wlt)

AN
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Fig. 2.3 Preservation of
phase space area.

Fig. 2.4 Evolution of the
linear oscillator described
in Example 2.1.

& 0

Example 2.1. For the linear oscillator d?6/dt*> 4+ 6=0 consider the
evolution of the area A; as shown in Figure 2.4 during one quarter of
the period. Since the system is energy conserving, 4, should remain
constant. Because of the circular symmetry, preservation of the area




Phase space . 11

Fig. 2.5 Phase space
diagram of a constant
velocity rotor.

can be shown by proving that every point in 4, rotates (at a constant
radius) through the same angle in the quarter period. The energy
conserving feature ensures that each point rotates at a constant radius
because the energy of the oscillator is proportional to the square of the
radius. For the rotation angle we note that since §=acost and
w =asint, the polar angle of a given point is

a(t)=tan~ !(tant)=t.

Therefore at t=to+7n/2, a(to+mn/2)=t,+mn/2. But since a(r) was
arbitrary, all points rotate by /2 in one quarter period, and the area is
preserved.

Example 2.2. As another example of area preservation consider the
very simple motion of a constant velocity rotor. The two first order
equations become

dw/dt=0
and
d6/dt =w,.

The corresponding phase trajectories are just horizontal lines with
differing angular velocities, wy;, as shown in Figure 2.5. The linear
dependence of 6 on w,; ensures that an initial rectangle of points
transforms to a parallelogram with a constant base and height,
thereby maintaining the original area.

__________ NN AW

e LYY

& 0
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Fig. 2.6 Phase space
diagram of the rotor with
periodic boundary
conditions. Phase points
moving to the right
disappear at § =7 and
then reappear at = — 7.

Example 2.2 also raises the question of boundaries on the phase
plane coordinates. In contrast to the linearized pendulum whose finite
motion allowed both 6 and @ to be bounded conveniently in phase
space, the angular coordinate 6 for the rotor can increase (positively
or negatively) without bound. Yet physically 6 is periodic. Therefore
the phase diagram is also made periodic by imposing periodic
boundary conditions on 6 as illustrated in Figure 2.6. The 6 axis can be
limited to [ —n,7], and the two edges of this domain are regarded as
identical. As the rotor goes around in the positive @ direction, its phase
representation disappears off the right edge of the phase diagram and
immediately reappears on the left side. Similar periodic boundary
conditions can also be usefully applied to the forced pendulum whose
motion passes through the vertical direction.

The property of area preservation, or volume preservation in a
higher dimensional space, is a general feature of conservative systems.
This property leads to a classification of dynamical systems into two
categories ~ conservative or dissipative — depending upon whether the
phase volumes stay constant or contract, i‘espectively. For example,
the linearized undamped pendulum conserves energy, and its trajec-
tories preserve phase area. On the other hand, the trajectories of the
linearized damped pendulum,

d?6/dr +dé/dt + 6 =0,
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decay to a single point: @ =0=0. This area contraction is illustrated
in Figure 2.7. Such a point is called an artractor, because a finite set of
initial coordinates (6,w) converge to it. Obviously phase area is not
preserved and the system is said to be dissipative.

Using these phase space characteristics we can develop a method
for determining from the equations of motion whether a system is
conservative or dissipative. The development of the method is easiest
to understand in three space dimensions; thus we assume phase
coordinates x;,x,,x3, as in Figure 2.8. The equations of motion of the
system can be written in terms of the phase ‘velocity’ components,

dxy/dt=F;(x1,%2,%3), —_ enea i fiO

Y s == (ONSIT o
dxp/dt =F,(x1,%2,X3), ) \_ =0 > 3 e V&{.!\{K e B Cﬁﬁi‘&(\\{
dxs/dt =F3(x;,x3,%3). E} 0 Tw Ylthing

Now consider a volume region V with surface S, and assume a net
flow of points from V. For a small region AS, the flow (or flux) from
the region is the component of the velocity vector v perpendicular to
the surface, multiplied by the element of surface area, AS. Since the
velocity vector v = (dx, /dt,dx,/dt,dx;/dt), is specified by the above set
of differential equations, then the flux out of the small region is
F - nAS. The net flux out of the entire surface is

Flux =f (F - n)ds,
S

- . (3
Fig. 2.7 Phase space I\J

i diagram of the dissipative
linear pendulum. Phase
area is not preserved.
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Fig. 2.8 Evolution of a
volume in three-
dimensional phase space.

where n s the unit normal vector to the surface, S. Since the flux is the
‘velocity’.of the. phase points from the volume V, then in time ¢ the
indicated volume will change by an amount equal to

Ot x Flux = 5tf (F-n)ds.
N

Therefore phase area is preserved or not preserved, depending on the
flux integral being zero or negative, respectively. But even this integral
will generally be difficult to evaluate, and therefore we simplify the
calculation further by using the divergence theorem from vector
calculus:

f(Fm)dS=f (V-F)dV.
S 14

(See, for example, Thomas and Finney (1979).)

This theorem converts an integral of a vector field such as F,ona
closed surface S, into an integration of the divergence of F over the
enclosed volume. Furthermore, the preservation of phase volume
should be independent of the particular volume chosen, and it is

X1
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therefore sufficient to examine V « Falone. If this quantity is zero, the
system is termed conservative, whereas if the divergence of phase
velocity is negative the system is dissipative. The kinematic properties
of the flux in phase space for a conservative system are analogous to
! L\OU\I“ ]\Q\> Wk%@f\m the flow of an incompressible fluid in hydrodynamics. (The term
Hamiltonian is sometimes used in connection with phase volume
preserving systems. Many dynamical systems obey Hamilton’s equ-
ations of motion and such systems are called Hamiltonian systems.
These systems preserve volume in phase space, according to
i Liouville’s theorem, and therefore Hamiltonian systems are a subset—
of the set of conservative systems. See Helleman (1983).) — —

Example 2.3. Let us write both of our example pendula in the phase
velocity form and determine their phase space preservation charac-
teristics by this method.

(i) d?6/dt* +6=0 (undamped) becomes
df/dt =w and dew/dt = .

Therefore F = (w,—0) and V * F = dw/360 + §(— 0)/6w =0, indicat-
ing that phase area is preserved.

(ii') d?6/dt® +d6/dt +0=0 (damped) becomes
d/dt=w and dw/dt= —w—8.

Therefore F = (0,~0—6) and V-F = 30/36+3(-0—0)50
= —1, indicating that phase area diminishes in time and the
system is, as expected, dissipative.

These two examples show how easily the divergence criterion may
be applied. For the driven pendulum the equation:

d*6/dr* + (d6/dt)/q + sinf = gcos(wpt)

|
| Ut =t
is converted to a set of first order equations: N 3
0
dw/dt = —w/q—sinb + gcose, - o7, )
d6/dt =, T st <7 |

D= Wt 1B dgdt=wp.

Then the right sides form the components of the three-dimensional
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Fig. 2.9 Phase diagram of
the nonlinear pendulum.

- The restoring force term
contains sind.

vector F. It is left as an exercise for the reader to show that
V+F = —1/q and that, therefore, the system is dissipative.

We have looked at phase diagrams for the damped and undamped
linearized pendula. Let us now introduce the full nonlinear restoring
torque, sinf. Figure 2.9 shows the phase plane for the undamped

pendulum:
d?6/dt? +sinfd=0.

For small values of d@/df and 6, the diagram appears similar to that of
the pendulum in the linear approximation, but as 6 approaches *7—a
pendulum swing that would go all around the circle — the picture
changes. At (+,0) the slope develops a discontinuity. The largest of
the closed trajectories bounds the region where the motion is
oscillatory (or vibrational). On the open trajectory of higher angular
velocity, the pendulum goes completely around the circle, and its
motion is a rotation modulated by oscillation. The average angular
velocity becomes nonzero. (One might compare this to a direct
current electrical signal modulated by an alternating current signal.)
The corresponding time series of these motions are shown in Figure
2.10.

Consider now the addition of a damping term so the equation
becomes

d26/dt> + do/dt +sind =0.

> €

/

-

Y

eren
e

i
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Fig. 2.10 Angular velocity
time series. In contrast to
the linearized pendulum,
the period of the motion
for the nonlinear
pendulum increases with
increasing amplitude.
Curves (a) and (b) show
oscillatory motions of
differing amplitudes.
Curve (c) shows the
pendulum with sufficient
energy to exhibit both
rotary and oscillatory
motions.

Fig. 2.11 Pair of phase
space trajectories for the
damped pendulum.

O (c)

> €

€

i

Typical trajectories are shown in Figure 2.11. As indicated previously,
the damping term results in an attractor at the origin where sinf~ 6.
Now, however, further attractors are added at 6 = + nm, w=0. This
can be seen by setting the phase velocity equal to zero and solving for
the stationary values of § and w; that is,

df/dt=w=0
dw/dt = —w—sinf =0,

While these attractors are points where the phase velocity goes to
zero, questions arise as to the stability of these points. Will the
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trajectories tend to go back to these critical points if slightly
perturbed? Will the stability depend upon the direction of the

perturbation? These questions can be answered by looking carefully
at the critical points. A useful technique for examining dynamical
behavior near critical points involves the assumption that the system

ol

will not deviate substantially from linear behavior near the critical

points. Then each of the nonlinear terms in the differential equationsis

givenalinear approximation near the critical points. This method was
developed by Poincaré in 1914 (Hayashi, 1964).
For the case of the damped pendulum,

do/dt=w

dw/dt = —w —sind,

it is easy to see (Problem 6) thai near 0= +nn, where n is even, the
linear approximation is

do/dt=w

dw/dt=—w—(0—nn),

and when n is odd the linear approximation becomes

do/dt=w

dw/dt=—w+ (0 —nn).

In each case 6 is transformed to a value centered at the critical point
such that 0—-A6=0—nn and therefore the linearized phase plane
equations are
n=odd; dAf/dt=w

dw/dt= —w+A6.

n=even; dAf/dt=w
dw/dt=—w—Af

Following the usual method for solving sets of first order linear
differential equations, trial solutions of the form Af=Ade* and
@ = Be* may be substituted into the equations; this yields two pairs of
homogeneous algebraic equations. The condition for a nontrivial
solution is the vanishing of the determinant of the coefficients of 4 and
B. This condition produces quadratic characteristic equations in A for
each case:

224+ 241=0: n=even A24+A—1=0:n=o0dd

For the n=even case, the 1 values are complex conjugates with
negative real parts. This implies that both A8 and will spiral inward
toward the equilibrium point attractor, which is called a focus. This
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Fig. 2.12 Ciritical points
in phase space: (a) focal
point (b) saddle point. In
(b) the trajectories going
to the saddle point are
stable whereas the
trajectories coming from
the saddle point are
unstable.

7 = even

(a)
(b)

7
.

n = odd

€

f

e~

\

/%/ﬁ N

2.

N

)

Z

§

- 0 T 27

Fig. 2.13 Phase space diagram of the damped pendulum. Alternate shaded and
unshaded regions are basins of attraction. All points within a particular basin are
attracted to the focal point within the basin.

case is shown in Figure 2.12(a). On the other hand, the n=odd
condition produces two real values of 1, one positive and one negative,
In this case the stable phase trajectories move toward the critical point
in one direction (negative exponent), but the unstable trajectories
move away from it in another direction (positive exponent). This kind
of critical point is called a saddle point and is shown in F igure 2.12(b).
The respective directions are obtained by determining the 4 and B
coefficients appropriate to each A value. Note how the unstable
trajectory directions correspond to the only possible directions for the
pendulum, located momentarily at the saddle point. The details of the
solution are left as an exercise (Problem 7). Putting all this inform-
ation together, the phase diagram for the damped pendulum can be
drawn as in Figure 2.13.
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This phase diagram Suggests yet another property of trajectories in
phase space. As drawn in F igure 2.13, the phase space is divided into
alternating regions as indicated by the shading. Inside each region all
the trajectories will eventually spiral to the enclosed focal point. Each
region is the set of all initial conditions (w,) of trajectories that will
eventually converge on a specific attractor - in this case a focal point. |
Such regions are called basins of attraction. F urthermore, each of the

diagonal curves (Figure 2.13) divid; one basin from another is

——called a separatrix. The arrows on the separatrix (and elsewhere)

indicate the flow of the trajectories, toward and away from the saddle |

_ points. We will see (Chapter 3) that one characteristic of chaos is the

partial dissolution of the separatrix as the basins start to merge.
While most of the discussion so far has focused on the phase plane, it

is important to realize that the phase space construction need not be

confined to two dimensions. A previously introduced equation set,

dxl/dt=F1(x1,x2,x3),
dx,/dt=F, (x1,%2,x3),
dx3/dt=F3(x1,x2,x3),

would define a three-dimensional phase space. We may use this set of
equations to illustrate some further properties of phase space. We
have already described the divergence method for determining if the
above system is conservative, F urther, it is evident that the equations
are not explicitly time-dependent. The equation set is then called
gyggpomous_and describes a time-independent flow in phase space,

similar to a set of stream lines in a fluid. In fact, the vector F is called 3
Sflow. Autonomdlfs‘_sm)}stems also obey the noncrossing property
described earlier. However, a projection of a higher dimensional space
onto a plane might show apparent crossings which do not represent
actual interactions.

The autonomous property is sufficiently useful that it is often
desirable to convert a time variable to some other variable in order to
make a nonautonomous system into an autonomous system. For
example, the variable ¢ is introduced in the driven pendulum
equations as d¢/dt=wy, so that the system’s dynamical variables
become 6, w, and ¢. This is convenient since the explicit time
dependence enters as a periodic term, gcos (wpt), and therefore ¢ can
be a periodic variable. Thenin a three-dimensional phase space, both
f and ¢ can be given periodic boundary conditions such as e[ — 7]
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Fig. 2.14 Phase diagrams
| for the moderately-driven
' pendulum, g=0.5:

' (a) three-dimensions, and
(b) two-dimensions
i (g=2).

(a) .
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and ¢€[0,27]. In Figures 2.14(a) and (b), a moderately-driven
pendulum system is illustrated in both three- and two-dimensional
phase spaces. The two-dimensional diagram is a projection of the
three-dimensional diagram. These diagrams show the state of the
pendulum after the initial transient effects have disappeared and after
the system has evolved to a steady state. The resulting closed orbit is
an attractor in the same sense as the point is an attractor for the
dissipative, nondriven pendulum. This attractor is obviously one-
dimensional and is called a limir cycle.
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Fig. 2.15 Steady state
phase diagram and sketch
of the corresponding
pendulum motion for
different drive amplitudes.
All motions are periodic
and one complete cycle is
shown in each case. The
direction of the arrow
depends on the initial
conditions. (a) g=1.07;
(b) g=1.35; (c) g=145.
(g=2).

W, ?
WO%E_/S

Fig. 2.16 Poincaré section
of the linearized
pendulum (g=0.5, q=2,
¢=0).

The motion of the pendulum illustrated in Figure 2.14 is a simple
oscillation. As the drive amplitude increases, more complex motions
occur, both periodic and chaotic, Some examples of more complex
periodic motions are illustrated in Figure 2.15, for various drive
amplitudes (g). The path in real space and the corresponding phase
plane diagram are shown in each case. The orbits involve a
superposition of oscillation and complete rotation.

Poincaré section

A Poincaré section is a device invented by Henri Poincaré as a means
of simplifying phase space diagrams of complicated systems. It is
constructed by viewing the phase space diagram stroboscopically in
such a way that the motion is observed periodically. For the driven
pendulum, the strobe period is the period of the forcing,

In order to make this idea more concrete let us refer to the
moderately driven pendulum whose attractor was shown in F igure
2.14(a). The Poincaré method consists of cutting or sectioning the
spiral attractor at regular intervals and looking at these sections along
the ¢ axis through the (6,0) plane. If this sectioningis done at intervals
corresponding to the forcing motion, then the stroboscopic pictures all
show one point. The motion always comes back to the same (6,0)
coordinates as ¢ is increased by 2z. Figure 2.16 illustrates the result.

N
T
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This strobe diagram is called a Poincaré section as the graph is ‘cut’
periodically.

The Poincaré section can provideinformation about-the ratio of the
strobe frequency, ws, to the natural frequency of the dynamical
motion, w,. For example, if a motion whose natural frequency was
equal to 1 were strobed at a frequency equal to 2, the Poincaré section
would have two points. In general, if the natural frequency of the
motion, wo, is equal to (p/q)ws where p/q is rational, then there are g
points, and the order of their appearance is such that, as a given point
appears on the circle, the next [q— (p+1)] positions are skipped. All
of the g points, however, are eventually filled in. Figure 2.17
illustrates the situation where, for example, when wy=>%ws, there are
five points and 5—(4+1)=0 positions are skipped as the points go
counterclockwise around the circle. These strobe points provide the
coordinate values for 6 and w on the Poincaré plot, and the
numbering of the points represents their order of appearance.

If the pendulum goes all the way around, then @ has a direct current
component as well, and the pattern of dots is not centered on the
origin. Since the mixture of rotation and oscillation may lead to a
nonzero average displacement (6>, the offset will generally be
asymmetric. Furthermore, if the relation between the strobe frequency
and the pendulum frequency is irrational (incommensurate), then the
strobe points will never quite repeat and the points will gradually fill
in a circle on the Poincaré section. Finally, if the system becomes
dissipative —in the pendulum case by the addition of a damping term —
then the points on the Poincaré section will move toward the
appropriate attractor. These ideas are illustrated in Figure 2.18.

For a dynamical system with a periodic forcing term, the Poincaré
section provides a simplification of the phase diagram while retaining
the essential features of the dynamics. Therefore it is ideally suited to
the driven pendulum. In Figure 2.19, some of the periodic motions
illustratéd by phase diagrams in Figure 2.15 are shown as Poincaré
sections. For the periodic motions, the appearance of these sections is
quite simple. But in Chapter 3, where the chaotic behavior of the
pendulum is described, the simplification of phase space provided by
the Poincaré section is shown to be very important for an understand-
ing of the physics. One useful tool for the study of chaos is the
observation of the distribution of points on a computer-generated
Poincaré section.

e
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Fig. 2.17 Relationship of
strobe frequency to
dynamical motion
frequency. The
positioning and order of
points on a Poincaré
section is shown for
different ratios of strobe
(ws) and motion
frequencies (wy).

(@) @0 =%w,; (b) wo =2a,;
(¢) wo =%Cl)s.
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Fig. 2.18 Poincaré
sections of different
motions. (a) Combined
oscillatory and rotational
motion whose frequency
is a rational fraction of
the strobe frequency.

(b) Oscillatory motion
whose frequency is
incommensurate with the
strobe frequency.

(¢) Dissipative motion.

(a)

(b)

(c)

st
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Fig 2.19 Poincaré
sections of motion

illustrated in Figure 2.15.

The section is taken at
¢=0 (g=2). (a) g=107;
(b) g=1.35; (c) g=1.45.
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Spectral analysis of time series

The time evolution of a dynamical system is represented by the time
variation f(t) or (when sampled at regular intervals) time series of its
dynamical variables. Any function f{t) may be usefully represented as
a superposition of periodic components. The determination of their
relative strengths is called spectral analysis.

Depending upon the nature of the function, f(t), we may represent it
in two different but related ways. Iff(z) is periodic, then the spectrum
may be expressed as a linear combination of oscillations whose
frequencies are integer multiples of a basic frequency. This linear
combination is called a Fourier series. However, it is more likely that
f(t) is not periodic, and the spectrum must then be expressed in terms
of oscillations with a continuum of frequencies. Such a spectral
representation is called the Fourier transform of f(t). This represen-
tation is especially useful for chaotic dynamics. Because the Fourier
transform is in general a complex-valued function, it is often
preferable to define a real-valued function which is the modulus
squared of the transform. This real function is called the power
spectrum of f(t). One familiar but crude example of the power
spectrum is the LED display of an electronic graphics equalizer. The
moving bars on the display indicate the instantaneous electronic
power in each of the sections of the audio frequency spectrum.

In this section we review the main features of the Fourier series and
then give the Fourier transform method as the limiting case of the
Fourier series when the periodicity off(t) becomes infinitely large, that
is, when f{t) ceases to be periodic.

If the function is periodic such that f(t)=f(t +nT) — with n being a
positive or negative integer and T being the basic periodicity —then, as
noted above, the frequencies of the various spectral components are
all integer multiples of the basic frequency, 1 /T =wo/2n. The Fourier
series representation of f{t) may be written compactly in complex
notation:

o0
ﬂt): z a,,ei"“"’t,

n=— o

where the a, are the amplitudes of the components of frequency nwq.
These amplitudes may be determined from the calculation:
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Fourier

T coefficients

.

(a)

! Approximate 7(z)

NN

flz)

Fig. 2.20 Fourier d
spectrum of a sawtooth
waveform. (a) Fourier
coefficients. (b) Sawtooth,
Jt), together with an
approximation of f{(t)
using the two largest
components of the
Fourier spectrum. (b)

n/wo
= l. —inwot 3
a, 5 _n/wof( e dt
(See, for example, Kaplan (1973).) An example of a periodic time

series often found in electronics is the ‘sawtooth’ function, shown in
Figure 2.20.
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Example 2.4. The time series of the ‘sawtooth’ function is
fe)=t:te(—T/2,T/2) where T =2n/w,. (The pattern is repeated.)
It is left as an exercise to show that

a,=0 for n=0;
a,=1/inwy for n=o0dd integer; and
a,= —1/inw, for n=even integer.

Substitution of these results back into the Fourier series expression
and manipulation of the ensuing complex expressions leads to the
result: ’

2

Sit) =—[sin(wot) —3sin(2wot) +isin(3ewpt) -+ + ]

Wo

Note that the coefficients 1, —4, 1, and so forth are not the same as the
a, but are combinations of pairs of a,. Figure 2.20(a) shows a bar chart
of the coefficients. The original function f{t), and the resultant of the
first two frequency components are shown as an approximation to ft)

in Figure 2.20(b).

The Fourier transform is an extension of the Fourier series in that
the basic periodicity T off{t) is allowed to become infinitely large. This
condition implies that f(t) need no longer be periodic. In this
circumstance the spacing between the frequency components be-
comes infinitesimal. The discrete spectrum of frequency components
becomes a continuum of spectral densities as shown. Therefore, a given
component a, converts to a(w)dw where éw is a small interval of
frequency and a(w) is the frequency-dependent amplitude or Fourier
transform. The practical advantage of the transform is that it can be
used to analyze a function about whose properties we are totally
ignorant. It often yields surprising and illuminating information.

One may think of the transition from the Fourier series to the
Fourier transform in terms of the following set of transformations:

T—o0
nwo—w,

 being a continuous variable, and

a,—a(w)dw.
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Taking the appropriate limits leads to the following conversions:
f(t) = Z aneinwot becomes f(t) =f a(w)dweiwt

and

an=&f flt)e~"*o'd¢ becomes a(co)dw=d—wf ft)e~ietds.
2n - 271: — ™

The two right hand expressions lead to reciprocal expressions for the
Fourier transform,

1 [~ .
a(w)=—f fe) "Hde,
2n)_ o

and the original function,
ﬂt)=f a(w)e* deo.

As noted earlier, the Fourier transform a(w) often turns out to be
complex, and it is useful to define a real-valued function, the power
spectrum, as

S(w)=|a(w)|*

One might compare this definition with the relation between wave
amplitude and wave energy. The power spectrum is the quantity
typically calculated in experimental or numerical work.

Let us consider two examples that can be solved analytically.

Example 2.5. Let f(t) be a decaying, oscillating function

e e | 1e[0,00)

fh)z{o , te(—0,0]

as shown in Figure 2.21(a). The function has a natural frequency wy. It
could represent a dissipative tuned electrical circuit, for example.
Calculation of the integral for a(w) leads to

1

“mzhnﬂ@—%n
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Fig. 2.22 (a) The real
part of the Gaussian time
series of Example 2.6.

(b) Power spectrum.

“Re f(t)

{a)

S{ew)
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their power spectra. For example, Johnson noise which results from
thermal agitation in electric circuits is frequency-independent or
‘white’ (in analogy with white light). On the other hand, ‘1/f’ noise,
which is common in resistors and solid state devices, has a spectrum
varying as f~! (or another power) at low frequencies (Malmstadt,
Enke, and Crouch, 1981). These two types are illustrated in Figure
2.24.

Fourier analysis is an interesting subject and the reader who wishes
to study it further may find helpful the treatment in Kaplan (1973).
Occasionally a brief discussion in the context of quantum physics is
provided in the modern physics sections of introductory physics texts.
See, for example, Orear (1979).

Analytical calculation of the Fourier transform can become very
difficult if the time variation is at all complicated, but numerical
methods are straightforward. At first glance, it appears that the
appropriate algorithms would involve numerical integration. How-
ever, a distinctly different and very efficient approach may be taken
when the data are discrete or digitized. The algorithm is called the fast
Fourier transform (FFT) and was reinvented by J.W. Cooley and J.W.
Tukey in 1964. (The method had originally been discovered in 1942
and utilized with hand calculators.) It takes advantage of certain
symmetry properties in the trigonometric functions at their points of
evaluation, in order to achieve an increase in speed over more
conventional methods. If N is the number of data points in the time
variation of a signal, then conventional algorithms would require
about N? computer operations, whereas the FFT requires about
Nlog,N operations. For a 1000 point transform this means a
reduction by a factor of about 100, and larger samples lead to even
more significant gains. A short introduction is provided in Higgins
(1976) and a listing in BASIC is given in Appendix B. (A more
comprehensive treatment is available in Press et al. (1986), Chapter
12.)

With this background of mathematical tools now available, we
may, in Chapter 3, concentrate more fully on the driven, damped
pendulum.
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Problems

L. For the linearized undamped pendulum show that the solutions,

@ = Asint and 6= Acost, lead to circular trajectories in the phase
plane.

- Show that one possible solution to the linearized damped

pendulum:
d*6/dt* +d6/dt +6=0

is 0=Ae™* cos (wot). Show that A=1% and wy=,/3/2.
A particle falls a distance x(t)in a gravitational field, with velocity
v(t). The system of equations is

dx/dt=vp
dv/dt =g

Show that the phase area is conserved. If a friction force, — kv, is
added to the acceleration equation show that the phase area
shrinks.

Heénon and Heiles studied stellar orbits in a galaxy using a two-
dimensional model with a potential V(x,y)=4(x2+y?)+x2y
—3y>. This leads to a system of equations for the four-
dimensional phase space of

dp/dt=—x— 2xy
dpy/d[ =—y —x? +y2
dx/dt=p,

dy/dt=p,

Is this system dissipative?

Lorenz developed the following system of equations to describe
the interrelations of temperature variation and convective
motion

dx/dt = —ox + oy
dy/dt= —Xz+rx—y
dz/dt=xy—bz

where o, r, b are constants, Prove that the system is dissipative,
- Show that the system d?6/ds? +d6/dt +sinf =0 linearizes to
d29/dt2+d0/dt+(0—n7r)=0 near =nn when n is odd, and to
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10.

11.
12.

13

d?0/d* +d6/dt — (0—nn)=0 near O=nn when n is even. In
general one would use a Taylor’s series expansion —can this case
be treated more intuitively?

Find the general solution to d26/d¢? + d6/dt + (§ — n) =0 when n
1s odd.

. Following the rationale of Figure 2.17 develop the Poincaré plot

for

i) o=3%w, and (i) w =1w,.
3 3

. (a) Find the power spectrum of the ‘square’ wave packet:

)= a te[0,7/2]
Ok 0  for all other values of z.

(b) Show that the average power is f{t)? =a?,

Prove the formula given in the text for the Fourier series
amplitudes, a,,.

Develop the results for a, in Example 2.4.

Do the calculation of S(w) for the decaying exponential wave to
obtain the Lorentzian curve.

Calculate the width of the Gaussian power spectrum.

The following problems require the use of a computer. Listings
provided in Appendix B may be helpful, although they were primarily
developed for the driven, damped pendulum, and therefore have to be
modified for these exercises.

A 14,

X 18

X 16,

17.

Write a program which will display trajectories in phase space for
the undamped, linearized pendulum. The program should re-
quire a set of initial (6,w) coordinates as input. Remember to keep
0 reasonably small so that sinf~ 6.

Write a program which will display trajectories in phase space for
the damped, linearized pendulum. Use the equation

d26/dt? +yd6/dt +wy26 =0.

Modify the program described in Problem 15 so that the term in 6
becomes wy2sind and try various inputs. In this case you should
modify the display of the 6 coordinate so that its boundary
conditions become periodic, as outlined in the chapter.

Modify the program described in Problem 14 so that the input

e i D st
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18.

19.

20.

21.

will be a set of initial coordinates which will form an initial area.
The program should then demonstrate the motion of the given
area in phase space. :

Modify the program described in Problem 15 to follow the
evolution of a block of initial coordinates. The development of
this phase space should illustrate a dissipative system.

Develop a program to illustrate Poincaré sections similar to
those shown in Figure 2.17. Use the linearized version of the
pendulum.

In Appendix B the program called EXPFFT computes the
power spectrum of a linear combination of periodic components.
Use this program to look at f{r)=sin(2nfyt). Use a Nyquist
frequency of 1 and sample 32 points for f,=4. Try different
numbers of points and different Nyquist frequencies. (The
Nyquist frequency is the maximum frequency shown by the
spectrum.) Try to determine the relationships which involve the
number of points, the Nyquist frequency, and the resolution in
frequency of the power spectrum.

Modify the above program to display the power spectrum of the
function e™* on [0,00]. Experiment with a variety of conditions
(Nyquist frequency, number of points, etc.) in your program.
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CHAPTER THREE

Visualization of the
pendulum’s
dynamics

Using the tools described in Chapter 2, we are now in a position to
discuss the main features of the motion of the driven pendulum. The
equations of motion may be written as: '

dow/dt = —w/q—sinf+ gcose
df/dt=w
d¢/dt =Wp

Since the system has three variables, its trajectory resides in a phase
space of three dimensions, the minimum for chaotic behavior. In this
chapter, we present and discuss a variety of computer simulations in
order to characterize the dynamics of the pendulum. To allow
compact illustration, values of § and ¢ outside the range (0,27) are
plotted at the equivalent point within that range.

The differential equations contain three adjustable parameters: the
driving force amplitude g, the damping factor ¢, and the angular drive
frequency wp. One could define a three-dimensional parameter space
in which each point represents a particular choice of the parameters
(9.9,wp). However a full exploration of the behavior as a function of all
three parameters would be a forbidding task. Instead, we fix wp,
choose a few values of g, and let g vary sufficiently to obtain a wide
variety of dynamical behavior. As an aid to making appropriate
parameter choices, we note that a constant torque of unity is just
sufficient to keep the pendulum stationary at 0=m/2. Therefore
forcing amplitudes in the region g~ 1 are used. F urthermore, the
undamped pendulum of small amplitude has a ‘natural’ angular
frequency equal to 1 in our units. Interesting dynamics occur when the
forcing-term amplitude is of order unity and the drive frequency wp,
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%@i E(@jm Wy

Fig. 3.1 A multiple
exposure of the pendulum
animation.

is near (but not equal to) 1. Part of the rich variety of dynamical
behavior comes from the interplay between the ‘natural’ frequency
and the drive frequency. One set of parameters containing intervals of
chaotic dynamics consists ofg=2,wp=2/3,and 0.5 <g<1.5(Gwinn
and Westervelt, 1985).

It is important that the reader develop an understanding of the
physical content of the equations and diagrams. One way to
accomplish this is to use a computer animation of the pendulum
motion. The program in Appendix B entitltd MOTION is one
version of such a simulation. By running this program or a similar
one, the reader can observe the pendulum’s behavior for a variety of
conditions (especially different values of g). Figure 3.1 shows a
‘multiple exposure snapshot’ of that animation. We encourage the
reader to utilize the simulation frequently while reading this chapter.
For some parameter values the motion appears to be periodic, while
for others it is chaotic. In some cases the pendulum is nearly periodic
for substantial intervals, with intervening irregular intervals; the net
effect is that the motion is chaotic.

We are concerned here with the long-term behavior of the
pendulum rather than the initial transients, which can be different.
Therefore, the animation should be allowed to go through 20 or 30
drive cycles before one considers the motion to have converged to its
long-term or statistically stationary state. We will sometimes refer to
the long-term behavior as the ‘steady state’, though the motion need
not be time-independent.
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Sensitivity to initial conditions

The fundamental characteristic of a chaotic physical system is its
sensitivity to the initial state, Sensitivity means that if two identica] -
mechanical systems are started at initial conditions x and X+g
respectively, where ¢ is a very small quantity, their dynamical states
will diverge from each other very quickly in phase space, their
separation increasing exponentially on the average. This phenom-
enon is illustrated for the pendulum in Figure 3.2(a). Phase
trajectories of a chaotic pendulum, originating at two neighboring
points, diverge markedly in less than one forcing period.
Sensitivity may also be illustrated by observing the phase space
evolution of a block of pendulum states, (Figures 2.3 and 2.7 display
unforced pendula in the undamped and damped cases, respectively.)
Figure 3.2(b) shows the evolution of a block of initial phase points for
the chaotic pendulum. After one half of a forcing period, the initial
rectangular block has become long, thin, and curved. Because the
system is dissipative, the area of the block shrinks with increasing
time. Yet the set of phase points stretches along certain directions and
contracts along other directions. The directions of divergence and
shrinkage are different at different points in phase space. The net effect
is that two closely spaced points are later found quite far apart.
The exponential divergence of adjacent phase points has a further
consequence for the chaotic attractor. In order that the trajectories of
two adjacent phase points remain bounded without intersecting, they
must fold back on themselves, producing a three-dimensional chaotic
attractor with many layers (actually an infinite number). A quantitat-
ive discussion of exponential divergence and the resulting geometrical
complexity of the attractor is given in Chapters 4 and 5.



Sensitivity to initial conditions

Fig. 3.2 Sensitivity to initial conditions. In (a) two phase trajectories, with
neighboring initial points near the origin, evolve during one drive cycle (y=1.5,
q=4). In (b) the phase points of trajectories from a block of initial points,
—0.5<8<0 and —0.5<w<0.5, are shown after one half of a drive cycle. (The
diagram may be regarded as a projection of the three-dimensional phase

trajectories onto the (0,w) plane.)
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Phase diagrams and Poincaré sections

We now use the geometrical tools of Chapter 2 to characterize the §
driven pendulum at a variety of driving force amplitudes g. The other
parameters are held fixed at wp=2/3 and g=2, though the effect of
changing them is also interesting (THese parameters are pure
numbers since the pendulum equation was made dimensionless.)

We begin by examining the trajectories in the three-dimensional
space (0, w, @), as shown in Figure 3.3. The first case is periodic, since
the trajectory retraces its path exactly. The situations in Figures 3.3
(b) and (c) are clearly more complicated, but it is difficult to tell exactly
what has happened from this diagram. Finally, Figure 3.3 (d) is a
chaotic state, and the diagram is so complex as to be nearly useless as a
way of characterizing the dynamics.

Clearly, a better method of displaying the dynamics is needed. Two-
dimensional phase projections and Poincaré sections turn out to be
helpful, and these are shown in Figure 3.4. The value of g for each pair
of diagrams is given in the caption. The upper parts of Figure 3.4 show
projections of the trajectories onto the (6,w) phase plane. In this space,
periodic motion appears as a closed orbit. Of course the projected
orbits can appear to cross, and this occurs in the more complicated
cases shown.

The lower parts of Figure 3.4 are the Poincaré sections, which are
simply slices across the ¢ axis of the three-dimensional attractor.
Periodic orbits ((a), (b), (d), (e), (f)) appear as a finite number of dots
(enlarged for clarity), while chaotic orbits ((c), (¢)) form complicated
sets containing an infinite number of points. We shall return to an
examination of their structure shortly.

The shape of the Poincaré sections varies with the phase at which
they are taken. Sections for different values of ¢ are shown in Figure
3.5, and the aggregate of these shapes is similar to the full attractor of
Figure 3.3 (d). As ¢ is increased, the attractors become stretched and
folded repetitively, much like the kneading of dough. Evidence of this
stretching and folding process may be seen in the fact that the sections
contain a number of layers.

Actually, the structure of the attractors is much more complicated
than is apparent from the sequence of Poincaré sections in Figure 3.5.
This may be illustrated by looking at a small part of one of the
sections, greatly magnified, as shown in Figure 3.6. The three parts of
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Fig. 3.3 Three-dimensional phase portraits for several values of driving force
strength and g=2. (a) g=0.9; (b) g=1.07; (c) g=1.47; (d) g=1.5. This last case
is chaotic.
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Fig. 3.3 (cont.)
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Fig. 3.4 Phase plane (above) and Poincaré sections (below) for several values of
driving force amplitudes and g=2. In some cases the dots of the Poincaré
sections have been enlarged for clarity. (a) g=0.9. (b) g=1.07, and a period
doubling is apparent; (c) g=1.15, and the system is chaotic; (d) g=1.35, and the
system is periodic again; (e) g=1.45, and another period doubling has occurred;
(f) g=1.47, and a second period doubling is apparent; (g) g=1.50, another

chaotic state.
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(d)

Fig. 3.4 (cont.)
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this diagram show the attractor at different scales of magnification.
(The different scales are obtained simply by changing the window for
the graph. Each graph is abstracted from a set of about 10000 points.)
The stretching and folding processes lead to a cascade of scales: the.
attractor consists of an infinite number of layers. The fine structure,%
when magnified, resembles the gross structure. This property is called |
self-similarity. |
These simulations of the chaotic attractor and its Poincaré sections
reveal a hierarchical structure that is uncharacteristic of ordinary
compact geometrical objects. In Chapter 5 the chaotic attractor and
corresponding Poincaré sections are discussed as fractals - mathema-
tical sets of noninteger dimension. While the periodic attractor is one-
dimensional (Figures 3.3 (a), (b) and (c) and its Poincaré section is
zero-dimensional (a few points), chaotic attractors are more complex,
and their dimension is a fraction greater than two (see Chapter 5).
Attractors having noninteger dimension are called strange attractors.
Finally, in Figure 3.7, we show several chaotic Poincaré sections
corresponding to different values of the damping coefficient g. The

layers of the attractor are more widely spaced as the damping
decreases (or g increases).
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Fig. 3.5 Poincaré sections taken at incremented values of ¢, the phase of the
forcing term. A¢ =2m/10. At ¢ == the section is anti-symmetric to the ¢ =0 case.
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Fig. 3.6 (a, b, ¢) Attractor in the Poincaré section for g=4 and g=1.5 viewed at

different magnifications, thus revealing the self-similar structure caused by the
folding and stretching of phase volume.
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Fig. 3.7 Attractors in the Poincaré section for chaotic states of pendula with
different amounts of damping (g=1.5): (a) g=2, (b) g=2.8, (c) g=4.
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Time series and power spectra

In Chapter 2 the power spectrum was introduced as a representation
of the relative abundance of different frequencies in a given time series.
Figure 3.8 shows a time series and power spectrum for the angular
velocity w at a drive amplitude of g=0.95. The time series in Figure
3.8(a) shows a periodic oscillation. The corresponding power spect-
rum (Figure 3.8 (b)) exhibits a strong peak at the drive frequency, 1 /(37)
together with some higher frequency harmonics. The harmonics are
not unexpected since the phase space pattern is asymmetric. Logar-
ithmic plots are used to hi ghlight components with low power levels —
an important feature of chaotic spectra.

InFigure3.9a corresponding set of diagrams is given for a chaotic
state at g=1.5. The time series is obviously irregular. The power
spectrum is broadband, and contains substantial power at low
frequencies. A sharp component at wp/27 is also present. Though a
broad spectrum does not guarantee sensitivity to initial conditions, it
is, in practice, a reliable indicator of chaos.

This book is primarily concerned with dynamical systems defined
by sets of differential equations. However, it is worth noting that
power spectra are also very useful for the analysis of experimental
data. Measurements typically include time series of some dynamical
variable, and the corresponding power spectrum can be readily
analyzed to determine the state of the system. (See, for example,
Gollub and Benson (1980) and Iansiti et al. (1985).)

Another useful technique for distinguishing chaotic and nonchaotic
motions is the calculation of Lyapunov exponents, which are quanti-
tative measures of the evolution of neighboring phase trajectories. As
with Fourier analysis, the method is applicable to both numerical and
experimental data; we describe it in Chapter 5.

Basins of attraction

Figure 2.13 showed the phase portrait of the damped unforced
pendulum. Each of the point attractors at 0=2nn (n=integer) is
encompassed by a region called a basin of attraction. All the points
(8,0) in the basin converge on the enclosed point attractor. The
boundary between two basins of attraction is called the separatrix.
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Fig. 3.8 (a) Time series and (b) power spectrum of angular velocity, w, for
periodic motion at g=0.95.
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Fig. 3.9 (a) Time series and (b) power spectrum of angular velocity for chaotic
motion at g=1.5. The peak is located at the drive frequency.
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For the case cited, the separatrix is a line defined by the stable phase
trajectory going to the saddle point as shown in Figure 2.13.

In order to determine basins of attraction for the forced pendulum
numerically, it is necessary to take advantage of some property that
differs from one basin to another. For example (Gwinn and Wester-
velt, 1985), one can use the fact that, in the region g> 1.3, there are two
stable rotary modes with average components of angular velocity
close to +wp for the different basins. The phase portraits of these
modes are shown in Figures 3.10(a) and (b).

The basins of attraction are obtained by taking each pair (6,0) of
initial conditions on a grid, and calculating the trajectory of that pair
over many cycles. To eliminate transient effects, the first 30 cycles are
discarded; and the velocity is then averaged over the remaining cycles,
Thetwo basins of attraction aredistinguished by the sign of {w)and, for
positive {w) a circle is put at the corresponding location of the initial
condition. Figure 3.11 shows the basins of attraction for g=1.3, a
periodic state.

On a large scale the basins of attraction of Figure 3.11 bear some
resemblance to those of the undriven pendulum, but the basin
boundaries appear fuzzy. In fact, careful studies (Gwinn and Wester-
welt, 1986) have shown the boundaries to be fractals (see Chapter 5);
that is, the basins are interwoven near the boundaries. If the initial
phase space coordinates of a trajectory near the boundary are not
specified precisely, the basin of attraction for the trajectory is
uncertain. This uncertainty is related to the fractal dimension of the
boundary.

Further insight may be gained by looking at the basins of attraction
with the Poincaré section superposed (Gwinn and Westervelt, 1985).
This type of diagram may be generated by insertion of the Poincaré
algorithm into the basin of attraction program. For a nonchaotic
state one finds that each piece of the Poincaré section is unambigu-
ously inside a single basin of attraction, as in the case g=1.47. (See
Figure 3.12(a) where the Poincaré attractor consists of eight points,
four from each of the two sets of initial conditions.) For g=1.48,
Figure 3.12(b), the attractors spread out, reaching toward the basin
boundaries. Finally, in the chaotic state for g=1.5, the basin structure
breaks up, and the previously separate attractors corresponding to
two different initial conditions join together to form a single attractor
consisting of an infinite number of lines, as shown in Figure 3.12(c).
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Fig. 3.10 Phase plane for g=1.35 and g=2 showing positive and negative drifting
states for different initial conditions: (a) 8o =0, we=0; (b) 65 =0, we=2.3.
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boundaries for g=1.48. (c) The separate attractors corresponding to two different
initial conditions merge and the basins lose their identities at the onset of chaos.

Here, g=1.5. In each case g=2.
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Bifurcation diagrams

- Phase diagrams, Poincaré sections, time series, and power spectra

provide information about the dynamics of the pendulum for specific
values of the parameters g, g, and wp, The dynamics may also be
viewed more globally over a range of parameter values, thereby
allowing simultaneous comparison of periodic and chaotic behavior,
The bifurcation diagram provides a summary of the essential
dynamics and is therefore a useful method of acquiring this overview.

For some values of the parameters, a pendulum will have only one
long-term motion, while for other slightly different choices, two or
more motions may be possible. If several of them are stable, the actual
behavior will depend on initial conditions. In dynamics a change in
the number of solutions to a differential equation as a parameter is
varied is called a bifurcation. ‘

For the pendulum, bifurcations can be easily detected by examining

a graph of o (at a fixed phase in the drive cycle) versus the drive
amplitude g. Several examples of these graphs, called bifurcation
diagrams, are shown in Figure 3.13. The interpretation is relatively
straightforward. If the pendulum is lightly driven and the motion is
periodic with the same period as the drive frequency, wyp, then the
angular velocity w has one value at a given time (point of constant
phase) during the drive cycle. If the parameter g is increased
sufficiently, further components of longer period are added to the
motion, and one observes more than one value of w at the given phase.
The system has undergone a bifurcation.

For the diagrams shown in Figure 3. 13, w is taken at the beginning
of the drive cycle (¢ =0). The system is allowed to come to a steady
state by omitting the first 30 drive cycles. The figure shows the next 30
drive cycles. Suppose first that the pendulum is lightly driven (say
9=0.9), asin Figure 3.13(a). Its motion is an oscillation at the forcing
frequency. The phase trajectory is a limit cycle that is symmetric about
the origin; the corresponding Poincaré section shows a fixed point,
The angular velocity takes only a single value in the bifurcation
diagram.

If the driving force is slightly increased to about 1.025, then the
phase trajectory loses its symmetry about the origin and has two
different shapes (Figure 3.14) depending on the choice of initia]




Jectra

secific |

SO be
ereby

wior,

:ntia]
view.
/ One
"0 or
>tual

e in

er is

ning
rive
tion
vely
n is
the
ant
sed

the

se,

ng
dy
30
ay
18
at

it 1
n 2

Bifurcation diagrams

69

1.45 1.46 1.47
(b)

1.48 1.49 1.50

Fig. 3.13 (a) Bifurcation diagrams showing the long-term values of the angular
velocity w at the beginning of each drive cycle, plotted against the forcing

amplitude g. (b} An expansion of one re
g=2 and wp=2/3.

gion of (a). The other parameters are




70

b

Visualization of the pendulum’s dynamics
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Fig. 3.14 Phase diagrams (above) and velocity time series (below) showing two
periodic trajectories (a), (b), which develop from different sets of initia}
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conditions. This two-valuedness appears in Figure 3.13(a) as a
splitting. But note that the pendulum’s motion still is oscillatory, with
a main frequency wp and possibly some higher frequency harmonic
content. Each set of initial conditions produces only one value of w in
the bifurcation diagram.

If the driving amplitude is increased to approximately 1.07, the
periodicity of the pendulum doubles, and it now has frequency
components at wp and wp/2. Observation of the animation for a given
set of initial conditions shows two slightly different oscillatory
motions of frequency wp whose combination has a frequency of wp/2.
The motion is sketched in Figure 2.15(a). This effect is called period
doubling. It causes the system to cycle between two values of @ (at the
beginning of the drive cycle) for each set of initial conditions. This 4
change is evident in the bifurcation diagram of Figure 3.13(a). Given |
the two-valuedness resulting from the two asymmetric attractors, a
total of four values of w may occur at ¢ =0.

The bifurcation diagram is very complex. For certain ranges of the
parameter g, the angular velocity takes on an infinite number of
values, though there are also many holes; these states are chaotic, It is
also interesting to see that within the chaotic regions there are small
intervals in which the motion abruptly becomes periodic again (for
example, g~ 1.12). Beyond the large chaotic region occupying much
of the interval 1.08<g<1.28, a wide interval of periodic motion
appears again, centered at g=1.35. Study of the animation in this
region shows a rotary motion with a small, superposed oscillation.
Depending upon the initial conditions, the rotary motion has either a
positive or negative average angular velocity. (See Figure 3.3(e).) This
two-valuedness is evident in the bifurcation diagram.

Beyond g=1.43, a new subharmonic cascade occurs, At g=145 (see
Figure 3.13(b)) the Poincaré section consists of two points, and at
g=1.47 four points (for a given set of initial conditions). In the region
around g=148 there are four densely occupied bands of w. The
motion is chaotic and w takes different values in a regular cycling
around the bands. A narrow periodic interval occurs for
1.487 < g<1.493, followed by chaotic motion for higher g.

The bifurcation sequences observed as a function of g change
dramatically if the parameters g and wp, are changed. One example of
a different sequence is given in Figure 3.15, where the damping factor
is reduced by a factor of 2 so that g=4. The regions of chaotic
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behavior are much broader, and there is a prominent window of
periodic behavior around g=1.25.

The bifurcation diagram is an important tool for discovering
Interesting parameter regimes for a dynamical system. While our
discussion focused upon variation of the forcing g, bifurcation
diagrams utilizing ¢ and wp, as the independent variable also yield
similar displays of varied dynamical behavior.

The numerical computations discussed in this chapter illustrate the
complexity and variety of motions of the pendulum. Experiments
illustrating some of these phenomena have been performed (Black-
burn et al., 1989). Analytic solution of the pendulum equations is
apparently not feasible except for special cases. Therefore, in order to
understand the development of chaos we consider in Chapter 4
several nonlinear mappings, which are more tractable than differen-
tial equations. Despite their simplicity, these maps exhibit many of the
phenomena illustrated by the pendulum.

Fig. 3.15 A bifurcation
diagram for q=4; this
Corresponds to lighter !

damping than in Figure 0.95 1.05 1.15 1.25 1.35 1.45
313, g
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Simulations

L

Use the program MOTION listed in Appendix B or the
MOTION option in the menu of the program CHAOS to study -
the motion of the driven pendulum. Try different values of the
parameter set (w,g,q). Let the motion run for many cyclesin order -
to observe the long term behavior.

Use the program PENDULUM listed in Appendix B or the 2D-
PHASE DIAGRAM option in the menu of CHAOS to study the
two-dimensional projection of the phase space for the pendulum,
Try different values of (wp,g,q) and different sets of initial
conditions (6p,wp). Discard the first ten cycles to allow the
pendulum to reach a steady state.

Use the INIT. BLOCK FLO option in the menu of CHAOS (or
modify PENDULUM) to study the motion of a block of initial
conditions in (6,w) space. Note the change in shape and area of
the block.

Use the program POINCARE listed in Appendix B or the
POINCARE SECTION option in the menu of CHAOS to study
the Poincaré section of the pendulum. Try different values of
(w,9,9) and phase angle. Discard the first ten cycles to allow the
pendulum to reach a steady state.

An electrical circuit with resistance, inductance, and nonlinear
capacitance may be driven sinusoidally into chaotic states. The
differential equation for the circuit is

d%x/dt? + Adx/dt + x® = Bcost

where 4 and B are adjustable parameters. It has been suggested
that the transition to chaos may be observed for parameter values
A=0.1 and 9.8<B<134 (Moon, 1987, p.272). Modify the
programs PENDULUM and POINCARE (listed in Appendix
B) or the source code on the diskette for the libraries LPHASE2D
and LPOINCAR in order to develop programs to study the
behaviour of this dynamical system. Note that the drive angular
frequency is 1. Eliminate the periodic boundary conditions on the
position coordinate and put larger boundaries on the axes.

Use the listing BIFURCATION in Appendix B or the BIFUR-
CATION DIAG option in the menu of CHAOS to generate a
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10.

bifurcation diagram for the pendulum. Since the process is
equivalent to the computation of many Poincaré sections, the
program takes a lot of processing time and you may wish to save
the computed data on a separate diskette.

Modify the bifurcation program to develop a bifurcation diagram
for the equation of Problem 5. Use the range of B values suggested
in that problem.

Use the FFT listing in Appendix B or the FFT option from the
CHAOS menu to generate a power spectrum for the pendulum
for g=1.5 and q=4.

Modify the Runge-Kutta procedure in the FFT program for the
equation of Problem 5 and run the program for a value of B which
gives a chaotic behavior. (Use your bifurcation diagram from
Problem 7 to find an appropriate value of B.)

Use the BASINS listing in Appendix B or the BASINS OF
ATTRA option from the CHAOS menu to generate a diagram of
the basins of attraction. Try g=1.3 and g=2.
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The driven pendulum, our primary example in this work, may seem to
be one of the simplest physical systems to exhibit chaotic behavior,
Mathematically and computationally, however, nonlinear differential
equations are difficult to solve. Even more elementary model systems
can give insight into the mechanisms leading to chaotic behavior.
These are stated in the form of difference equations, rather than
differential equations, A typical difference equation is of the form

Xn+1 =f(1uaxn)a

where x, refers to the nth value of x, a real number on the unit interval
(0,1),and pisa parameter. One may think of nT as a time, where T'is a
basic time interval, The parameter K may vary with the particular
model and, in the examples we will discuss, varying u leads to the
onset of chaotic behavior. The function, £, is said to be a map of the
interval 0,1) onto itself, since it generates x,, ; from x,. The function
S(u,x,) may be nonlinear in the argument x,, just as the differential
equations for the pendulum are nonlinear in 6.

coordinates (6, 1Wn+1) at the end of the (n+1)th period. This
relation can, in principle, be written as a mapping in two dimensions:

P R

R L

e ————
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9n+ 1= Gl (0,,,(0,,)
Wyt = G2 (gmwn)'

Sometimes (but not generally) such mappings may be further
simplified to one dimension. While a particular analytic form of the
pendulum mapping has not been found, simple maps may be used to
illustrate some aspects of the pendulum’s behavior.

Because of their relative simplicity, one-dimensional maps provide
several advantages over the differential equations. They allow for
simple, clear statements of many characteristics of chaotic behavior,
such as sensitivity to initial conditions and the evolution of inform-
ation. Maps also illustrate clearly the mechanisms of bifurcation of
solutions, and the folding and stretching required for chaos in a finite
phase space. In this chapter several maps and their properties are
explored to aid in further understanding chaotic behavior.

The logistic map

This simple map, given by the difference equation
Xn1=pXn(1—x,), ~ x,e[0,1]

takes its name from the corresponding differential equation
dx/dt =pux(1—x)

originally used by P.F. Verhulst in 1845 to model population
development in a limited environment (May, 1976). The logistic map
is one-dimensional and nonlinear, and may be visualized as indicated
in Figure 4.1. The diagram has three parts: the parabolic curve
y=pux(1—x), the diagonal line x,,, ; =x,, and a set of lines connecting
the successive iterations of the map. The time sequence produced by
the mapping is obtained by choosing a value of (in this case u=2),
plotting the corresponding quadratic curve, and repetitively generat-
ing subsequent points starting with some initial value (in this case,
X0 =0.2). The first point, x,, is found where the line x, =0.2 meets the
quadratic curve. The next step is easily determined by moving
laterally to the x, . ; =x, diagonal. From the diagonal x, can be found
by again going vertically to the quadratic curve. The process is
repeated until x settles (in this case) to a steady state where x,,.+; =x,,
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Fig. 4.1 Evolution of the
logistic map for n=2,
The equilibrium value is
x=0.5,

Such a ‘fixed’ point is obtained whenever the magnitude of the slope of
the map where it intersects the diagonal is less than unity.

In Figure 4.1 the sequence {x,} reaches a fixed point. A little
experimentation shows that this is apparently the case for all initia]
conditions x, when pu=2.1If u is increased to approximately 3.3 as in
Figure 4.2 the situation changes. The quadratic curve is steeper and |
the magnitude of its slope |f*(x) , is greater than 1 at the intersection.
Therefore, the fixed point is unstable and, after an initial transient, x,
oscillates between two values so that Xn+2=X, This effect is
reminiscent of the Poincaré map of the pendulum for values of the
driving force around g9=107. Higher values of u lead to further
bifurcations and even to chaotic behavior, F igure 4.3 shows the
situation for y=3.9, The long-term behavior is such that the x, are not
limited to a few points but rather fill much of the original quadratic
curve, and the behavior is chaotic, This behavior is reminiscent of the
Poincaré sections for the pendulum in the chaotic region.

Rather than continuing to describe the behavior of the logistic map |
for individual values of H, We present a more global view of the mode]
through a bifurcation diagram, as shown in F igure 4.4, where u varies
smoothly from 2.9 to 4.0. In this diagram the map is iterated several
hundred times at each of many intervening values of 1, with the first
100 values discarded to ensure that only the long-term behavior is
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Fig. 4.2 The logistic map for u=3.3 showing an oscillation between x=0.48 and
x=0.83.
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Fig. 4.3 Tteration of the logistic map for a chaotic state at u=3.9.
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3.0 3.2 3.4

Fig. 44 Bifurcation diagram of the logistic map. Long-term values of X, are
plotted for 29 <u<4.

L L L L L i

0.0 0.2 0.4 0.6 0.8 1.0

Xn

Fig. 4.5 A period-4 logistic map cycling between four values: x=0.37, 0.52, 0.83,
and 0.88.
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plotted. The appearance of this diagram is similar to that of the
pendulum bifurcation diagram (Figure 3.13), including regions where
the behavior is chaotic and regions or windows of periodicity. We now
focus on some general features of chaotic maps that are illustrated by
the logistic map.

Period doubling

One important feature of the logistic map is the passage to chaos
through a sequence of period doublings; the bifurcation where this

doubling occurs is called a pitchfork bifurcation, because the local -

shape of the bifurcation diagram resembles a pitchfork. This period
doubling effect is illustrated in Figure 4.5, which shows the long-term
behavior of the map at 4 =3.53. Two such bifurcations have occurred
and x,44=2X,.

The period-doubling mechanism is one route to chaos that has been
much studied as it is common in many dynamical systems, including
the pendulum for g slightly greater than 1. The period-doubling route
is particularly interesting because it may be characterized by certain
universal numbers that do not depend (within certain limits) on the
nature of the map (or ordinary differential equation). For example,
the ratio of the spacings between comsecutive values of u at the
bifurcations approaches a universal constant, called the Feigenbaum
number after its discoverer. If the first bifurcation occurs at p,, the
second at u,, and so forth, then this universal number is defined as
(Feigenbaum, 1978)

lim 247H1 54669201609 1029909 . . . .
ko Hr+1— Hi

This number can be roughly checked by careful scrutiny of the
bifurcation diagram. Furthermore, it can be used to generate the
sequence {4}, using the bifurcation diagram to select the first few
values. Finally, it can be shown that an infinite number of bifurcations
occur as u=3.569944 . . . is approached.

The Feigenbaum number is a universal property of the period-
doubling route to chaos for maps that have a quadratic maximum.
Universality expresses the notion that certain properties of nonlinear
maps are independent of the specific form of the map.
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Fig. 4.6 Magnification of
the bifurcation diagram
in the region of the
period-3 window.

The periodic windows

The regions of chaotic behavior are interrupted by intervals of
periodic behavior for u>pu., =3.569. One of the largest of these

windows occurs near ;= 3.83, where a periodic orbit (a 3-cycle) occurs, &

as shown in Figure 4.6. The existence of this periodic behavior is
evident from the shape of the third return map, for which

Xn+3 =f(.f(f(xn)))

In Figure 4.7 two such maps are shown for two values of u; (a) at the
start of the window where u = 3.8282, and (b)inside the window before |
the period doubling cascade begins, where ;1 x 3.84. Although these |

diagrams have very similar appearances there are some important
differences.

At the left boundary of this window, the third order return map
(Figure. 4.7(a)) shows three values of x where the curve is tangent to

the diagonal line, x,3;=x, These points are the cyclic steady state

values of x which appear at the beginning of the window. Other initial
values of x will be drawn to these fixed points since the shallow slopes
of the curve near the fixed points lead to stability. This particular type
of transition is called a tangent bifurcation.
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Fig. 4.7 (a) The map x,.3=/(x,) at the onset of the period-3 window

(1 =3.8282) showing three stable values of x, at about 0.16, 0.51, and 0.95. An

unstable point where x,.3=x, appears at about x,~0.76. The origin of the term
1 ‘tangent bifurcation’ is apparent. (b) The map x, . 3 =f3(x,) just inside the
window at u=3.84.
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Fig. 48 An illustration of a-:
‘type I’ intermittency as

the trajectory squeezes
through the gap between

the map and the tangent
line. During the passage
through the gap, x

changes very slowly.
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For slightly larger 4 the bifurcation diagram continues to show the
period-3 behavior. Figure 4.7(b) shows the behavior of the cor-

the tangent bifurcation, continues to be stable.

At u=58424 subharmonic cascade to chaos occurs. The slopes of |
the third order maps near the previously stable values of X now
become too steep for stability. For the first period doubling the sixth
order map has six attractors; this process continues unti] chaotic
bands form at 1=~3.85. The resulting bands merge near u~3.857 to
form a continuum of values of x. This expansion of the chaotic regime
and similar discrete changes in a chaotic attractor are sometimes
called crises (Grebogi, Ott, and Yorke, 1987).

For values of M just below the onset of the period-3 window, the
third order return map is not quite tangent to the diagonal line,
Therefore x, can pass through the resulting narrow gaps and then go
freely around the plane until it again becomes temporarily trapped in

0.8

0.6

0.4

0.2

0.0

0.4 0.6 0.8 1.0
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anarrow gap as shown in Figure 4.8. While it is in the gap, x, is nearly
fixed. If we think of the map as a Poincaré section for a differential
equation representing a physical system such as the pendulum, the
physical variable would show nearly periodic motion with occasion-
ally irregular bursts. This common type of chaotic motion is called
type I intermittency and occurs when a dynamical system is close to a
tangent bifurcation if there is a mechanism for intermittent return to
the narrow gap.

Lyapunov exponent

The Lyapunov exponent of a map (named after A.M. Lyapunov,
18571918, a Russian mathematician) may be used to obtain a
measure of the sensitive dependence upon initial conditions that is
characteristic of chaotic behavior. This exponent (often written as 1)
may be readily computed for a one-dimensional map such as the
logistic map. If a system is allowed to evolve from two slightly differing
initial states, x and x + ¢, then after n iterations their divergence may
be characterized approximately as

e(n)=~ ee*",

where the Lyapunov exponent A gives the average rate of divergence.
(The average must be taken over many ‘initial conditions’ spread over
the trajectory.) If Ais negative, slightly separated trajectories converge
and the evolution is not chaotic. If 4 is positive, nearby trajectories
diverge; the evolution is sensitive to initial conditions and therefore
chaotic.

Consider a specific one-dimensional map given by x, + ; =f(x,). The
difference between two initially nearby states after the nth step is
written as

frx+e)—f"(x)~ ee™,

or
og [LEFOS ]

For small ¢, this expression becomes

&
dx |

Ax L log.

n
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of phase space develops on average as

V= Voe(/h+12+- g }.,,)t‘

For the driven pendulum there are three Lyapunov exponents
corresponding to the three dimensions of the phase space (6,w,¢).
Since the orbits are solutions to a set of ordinary differential
equations, the calculation of Lyapunov exponents is less straightfor-
ward than for maps. On a chaotic attractor such as that of the
pendulum at g= 1.5, the directions of divergence and contraction are
locally defined, and the calculation must constantly adjust for this
condition. Despite this difficulty, computer algorithms have been
developed for calculating Lyapunov exponents both from differential
equations and from experimental data; the Lyapunov exponents of
the pendulum are discussed further in Chapter 5.

Entropy

The complex appearance of the various graphical representations of
chaotic behavior naturally leads to the question of the relationship
between statistical mechanics and chaos. One way to connect these
phenomena is to apply the concept of entropy to a chaotic system,
comparing the result to an associated statistical system. This com-
parison is readily done with the logistic map.

Consider a hypothetical statistical system for which the outcome of
a certain measurement must be located on the unit interval. If the line
is subdivided into N subintervals, we can associate a probability p;
with the ith subinterval containing a particular range of possible
outcomes. The entropy of the system is then defined as

N
S=— ). pilog.p.
i=1

This quantity may be interpreted as a measure of the amount of
disorder in the system or as the information necessary to specify the
state of the system. If the subintervals are equally probable so that
pi=1/N for all i, then the entropy reduces to S =log.N, which can be
shown to be its maximum value. (See Problem 5.) Conversely, if the
outcome is known to be in a particular subinterval, then S=0, the
minimum value. When S =log.N, the amount of further information
needed to specify the result of a measurement is at a maximum. On the
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Fig. 49 Lyapunov
exponent 4 versus u for
the logistic map.
Sensitivity to initial
conditions occurs where
the exponent is positive.

Finally, we use the chain rule for the derivative of the nth iterate and |
take the limit as n tends to infinity to obtain

n—1
A=1lim 1 Y. log. |f/(x:)|.
n—-oo N i=0

Therefore the Lyapunov exponent gives the stretching rate per
iteration, averaged over the trajectory. In Figure 4.9, the Lyapunov
exponent is plotted as a function of the parameter u. The sign of A
correlates very well with the behavior of the system as shown in the
bifurcation diagram, Figure 4.4. Beyond ., =3.56, the regions of
periodic behavior correspond to the intervals in which A<0.

For n-dimensional maps there are n Lyapunov exponents, since
stretching can occur for each axis. An n-dimensional initial volume
develops, on average, as

V= Voe(ll + A+ o+ A")n.

For a dissipative system the sum of the exponents must be negative. If
the system is chaotic then at least one of the €xponents is positive. (See

Problem 14 for a soluble two-dimensional map.)

Lyapunov exponents are also defined for continuous time dyna- |

mical systems such as the pendulum. An initia] n-dimensional volume
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Fig. 4.10 Entropy § as
function of u for the
logistic map. The
maximum entropy
corresponding to equal
probability for each of
the 40 cells js 3.6888.
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4.11 The stretching
folding property of
ogistic map for y=4.

fractal dimension of the attractor. These subjects and their relation-
ships are discussed in Chapter 3.

Stretching and folding

The logistic map also provides some insight into the stretching and
folding mechanism that is necessary to keep chaotic trajectories
within a finite volume of phase space, despite the exponential
divergence of neighboring states. For the logistic map the stretching
(divergence of neighboring trajectories) and folding (confinement to
the bounded space) can be demonstrated fairly easily, by reference to
Figure 4.11.
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For =4 the logistic map has a maximum value of 1 at x,=1 and
the values of x,e(0,3) map to x,;,€(0,1). Similarly the values of
x,&(3,1) map to x,.,€(0,1), but in the reverse order. Therefore both
intervals of x, are stretched by a factor of 2, but because the order of i
the mappings is opposite, the second stretched interval is folded onto -
the first stretched interval. The figure illustrates a few cycles of the
mechanism. The process resembles the one used to make taffy candy
or knead dough for bread.

The stretching and folding process illustrates another important
feature of chaotic systems that was implied in our discussion of
entropy, namely the loss of information about the initial conditions of |
a system as time or iteration number increases. Mathematically this |
arises from the noninvertibility of the map f(x,.u). That is, it is always
possible to predict x,.; from x, but there is ambiguity in trying to
retrodict x, from x,,;. (One finds the same noninvertibility with
elementary functions such as y =sinx, y =x2, and so forth. The inverse
functions can be defined only by limiting the original domains.) It
turns out that a necessary condition for any one-dimensional map to
exhibit chaotic behavior is that it be noninvertible.

The circle map

The logistic model illustrates many characteristics of chaotic dy-
namics, such as bifurcations, period doubling, intermittency, sensi-
tivity to initial conditions, and the stretching and folding process.
However, some important features of the pendulum, especially the
phenomenon of ‘phase locking’, require a two-parameter map for
their explanation. Phase locking is said to occur when the ratio of the
frequency of the pendulum to that of the forcing becomes locked at the
ratio p/q of two integers, over some finite domain of parameter values
(D’Humieres et al., 1982). A similar phenomenon was observed by
Christian Huygens in the seventeenth century: the synchronization of
two clocks on the same wall. The common attachment to the same
wall must have provided a coupling of the clocks to each other. (This
phenomenon is mentioned in Bak (1986).)

The pendulum’s Poincaré section may be modeled as a two-
dimensional (but unknown) map:
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0n+ 1= Gl (9,,,0),,)
Wp+1= GZ‘(emwn)'

If w, is a function only of §,, after the initial transients have died away,
then w,=f(0,), and the two-dimensional Poincaré map reduces to a
one-dimensional map:

0n i+ 1= Gl (Hmf(gn))

or
9n+ 1= F(en)

This map may be regarded as a mapping of the circle to itself, It is one-
dimensional, with an angular coordinate 0.€[0,1] and periodic
boundary conditions (corresponding to the pendulum angular coor-
dinate, 6e[0,27]).

For a certain range of forcing amplitudes and frequencies, a circle
map may be a reasonable approximation to the driven pendulum. The
difference equation of a particularly useful circle map known as the
standard map is

On+1=0,+Q— (K/2r)sin(2n0,) mod 1.

There are two parameters (Q,K) for the standard map, in contrast to
the single parameter u for the logistic map. The parameter Q is the
rotation frequency (‘winding number’) in the absence of nonlinearity,
whereas K gives the strength of the nonlinear coupling of the
oscillator to the forcing. This nonlinear coupling can modify the
angular change per iteration. (A numerical justification of the
connection between the standard map and the pendulum over a range
of parameters is given in Jensen, Bak, and Bohr (1984).)

To obtain a sense of the behavior of the standard map, we first omit
the nonlinear term by setting K =0. Then the map reduces to

Ope1=0,+0Q,

which is illustrated in Figure 4.12 for the case Q=0.4. After five
iterations @ returns to its initial value 0o=0.3, having made two
revolutions. The winding number, W, is %, and it is just equal to Q. If the
winding number is a rational number, p/q, then the map is cyclic or
periodic. If the winding number is irrational then 6 does not return
exactly to its initial value and the motion is termed quasiperiodic.
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0n+1

Fig. 4.12 The linearized circle m

periodic boundary conditions on §. The diagonal

ap for a rational

winding number of 0.4, using
line represents 6, , =0,

Fig. 4.13 The linearized circle ma
0.404004 . . . .

p for an irrational winding number,

1.0
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Figure 4.13 illustrates quasiperiodic motion with Q=0.404004 . . .
(irrational) for 200 iterations. The angle comes arbitrarily close to any
particular value if nis sufficiently large. Mode locking occurs when the
nonlinear term is added; this keeps the motion periodic even when Q
is irrational. In Figure 4.14, for example, K=095 and
Q=0.404004 . . . as before. However, the motion repeats every five
iterations. The winding number measures the average phase change
periteration. For K #0, it is not equal to Q and is defined generally as

W=lim (9—‘9—‘)>

n— o n

The nonlinear term obviously changes the shape of the function
representing the map. Note that at K =0.95 the map is still invertible.
The widths in Q of the various mode-locked regions where the
winding number is fixed increase with K, as shown in Figure 4.15. The
resulting ‘Arnold tongues’ are named after the Russian mathema-
tician who discovered this structure (Arnold, 1965).

There are an infinite number of phase-locked intervals. There are
also an infinite number of irrational winding numbers. As Q varies at
fixed K, the map displays both periodic and quasiperiodic motion.
But as K approaches 1, the rational intervals increase in size. At K =1
the set of rational intervals is a fractal. Figure 4.16(a) shows the
rational winding numbers as plateaus in a plot of W versus Q. If the
figure is magnified (Figure 4.16(b)), more plateaus become evident,
and the curve shows repetition of the same patterns at the new
magnification. Such a curve is said to be self-similar. This structure is
called the Devil’s staircase. (For a discussion of the Devil’s staircase
and some applications, see Bak (1986).)

Beyond the K = 1 critical value, the phase-locked motions overlap;
this implies that several different periodic oscillations can occur for
given (K,Q) depending on initial conditions. The graph of W versus Q
ceases to be monotonic. The map develops local maxima and minima
and therefore becomes noninvertible for K > 1, a necessary condition
for chaotic behavior, as we also noted for the logistic map. A
noninvertible case of the standard map is shown in Figure 4.17. Chaos
is, in fact, observed for some values of Q.

Several routes to chaos occur for the standard map. In Figure 4.18
we illustrate three representative paths through the Arnold tongues of
the (Q,K) parameter space. Path (a) shows the system in a state where

< ————
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0.8 1.0

Fig. 4.17 The standard map becomes noninvertible for K>1 (here Q=05 and
K=1).
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the winding number is irrational and the behavior is quasiperiodic.
The system continues in the quasiperiodic state until it reaches the
junction of two phase-locking modes at K =1 and becomes chaotic.
Path (b) shows the system as initially quasiperiodic but then passing
into a mode-locking regime and eventually becoming chaotic. Path (¢)
shows the system starting in a mode-locked state, traveling toward the
critical line, K=1, but then continuing to a larger value of K, beyond
which a period-doubling cascade to chaos begins. The prominence of
the period-doubling route to chaos is consistent with the existence of a
quadratic maximum (Figure 4.17). This aspect of the circle map is
similar to the logistic map.

The logistic and circle maps provide many valuable insights into
chaotic dynamics. As we discuss in the final section of this chapter,
many of the concepts developed from these one-dimensional maps
apply to the driven pendulum. As a final model for chaotic behavior
we consider a two-dimensional map.

The horseshoe map

In our discussion of the logistic map we saw that the interval (0,1) is
stretched and then folded back upon itself. The stretching and folding
phenomenon is a primary mechanism for allowing sensitivity to initial
conditions in a finite-sized phase space. The horseshoe map intro-
duced by Smale (1963) is a two-dimensional mapping that illustrates
the stretching and folding action. It has been shown to be embedded in
the dynamics of the pendulum for some parameter choices (Gwinn
and Westervelt, 1986).

The horseshoe map consists of the sequence of operations shown in
Figure 4.19. First consider a map f which acts upon the unit square,
and consists of (a) an expansion in the y direction by a factor u>2, (b)
a contraction in the x direction by a factor 1e(0,3), and (c) a folding, as
illustrated in Figure 4.19. The transformed set f(S) is then intersected
with the original set S so that the map is now confined to a subset of
the original unit square. If the entire sequence of operations is
repeated, then four stripes appear from the original two, and so on.
Repetition of the process n times leads to 2" stripes, and a cut across
the stripes would, in the limit of large n, lead to a fractal (see Chapter
5).

t—.
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Fig. 419 The
construction of the
horseshoe map for two
iterations.
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Horseshoe configurations occur in the Phase space of dynamical
systems where there are regions of strong contraction and expansion.
For example, we recall from the initia] discussion (Chapter 2) of the
pendulum phase plane that there are saddle points at =+ and

-@=0. Near these saddle points, trajectories approach most rapidly

along certain ‘stable’ directions, and depart most rapidly along other
‘unstable’ directions, as shown in F igure 2,13, Along these directions,
the Lyapunov exponents are negative and positive, respectively.
Alternatively stated, tangent vectors along the stable directions are
contracting, and tangent vectors along the unstable directions are
expanding. Any region of phase space where these two types of

S —_—u>2 — f(S)
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S—

behavior are in close proximity may exhibit stretching and folding.
Trajectories containing both types of behavior develop in a
complex way. For example, see Moon (1987), Chapter 5. This may be
explained with reference to Figure 4.20, which shows the phase plane
for the damped, undriven pendulum as in Figure 2.13, but with the
stable and unstable manifolds W* and W* of the saddle points labeled,
and the two basins of attractions shaded differently. The manifolds
W*and W*" are simply the trajectories that approach and depart most
quickly from the unstable equilibrium. If the pendulum is now driven
periodically but weakly, the same diagram may be regarded as a
Poincaré section of the three-dimensional phase space, except that the
lines should be regarded as a sequence of dots corresponding to
successive passages of the trajectories through the Poincaré plane.

Fig. 4.20 Sketch of the phase plane of the damped, but undriven pendulum,
showing the stable and unstable manifolds of the saddle points. Shaded and
unshaded regions correspond to distinct basins of attraction.
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If the pendulum is driven more strongly, the unstable manifold
from the saddle at 7 and the stable manifold from the saddle at — 7
may approach each other and touch as shown in Figure 4.21(a), or

mapped into another one closer to the saddle point, leading to an
infinite number of intersections | 2, I3, and so forth, The resulting

I, I, . ... Two nearby points may be mapped far apart, yielding chaos,
(¢) Additional detail (see text).
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configuration is called a heteroclinic tangle. (If W* and W" come from ,

the same fixed point, the configuration is known as homoclinic.)

Because of the strong bending of the manifolds near the saddle
point, a small rectangular section of the plane near I, will suffer
stretching and folding much like that of the horseshoe map. In fact,
thatdistorted rectangleis topologically equivalent to (can be smoothly
deformed into) the iterated Smale horseshoe (Abraham and Shaw,
1984). As a result, two points that are initially close together will be
found far apart after a few iterations, Therefore, chaos is a natural
consequence of a heteroclinic tangle.

The actual situation is even more complicated than Figure 4.21(b)
suggests. Let us label the first tangle near saddle S 1 as Ty (see Figure
4.21(c)). Clearly there must be a second tangle T, near the saddle S, at
7, since the geometry there is the same as that near S,. But where did

the first intersection I, in that tangle come from? It must have resulted |
from an earlier iteration. Going backward in time takes I 1 back
through an infinite sequence of intersections to the neighborhood of

S. This implies that the stable and unstable manifolds from S, must
cross each other an infinite number of times near §;. Thus, the
geometry of the pendulum (as visualized in the Poincaré plane) is
infinitely complex, and the essential character of that complexity is
contained in the horseshoe map.

Applications to simulations of the pendulum

The logistic map, the standard map, and the horseshoe map illustrate
the kinds of phenomena that are important aspects of the motion of
the driven pendulum. Though we have alluded briefly to connections
between the driven pendulum and the maps, we now discuss several of
these connections in greater detail.

(i) Period doubling. The logistic map illustrates the period-doubling
route to chaos. Reference to the bifurcation diagram of Figure 4.22
provides evidence of similar behavior for the pendulum. A pair of
period-doubling cascades begins at g~1.07 (preceded by symmetry
breaking at g = 1.0, where the angle exceeds 7). An examination of the
data of Figure 4.22 (b) at greater magnification of g and o than in
Figure 4.22 (a) - shows period doubling at g=1.066, g= 1.077, and
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1.45 1.46 1.47 1.48
(b) g

Fig. 4.22 Bifurcation diagrams for the pendulum, indicating various dynamical
regimes. The diagrams are generated by following the long-term behavior of two
initial points (6p,w,), one each from the positive {w) and negative () basins of
attraction. (b) Magnification of part of (a).
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g~ 1.080, with further bifurcations unresolved. Using these data the
ratios of the changes in g can be estimated and compared with the
Feigenbaum number, 4.669 . . .. For this sequence the result is 4 £ 1.
It is remarkable that the behavior of the logistic map is manifested (to
within the computational accuracy) in the more complex pendulum.

(it) Phase locking. Phase locking of the pendulum is evident when the
average angular velocity is some rational multiple (usually low order)
of the angular forcing frequency wp. This condition may be specified
in the following way. If the pendulum is phase locked at a ratio p/g,
then for g drive periods the angle difference is (¢t +gqT)—6(¢)=2np,
where T is the drive period, 2n/wp. Then the average value of
w=d0/dt over q periods is

t+qT

)= (l/qT)f wdt=(p/q)wp.

Measurement or computation of the average angular velocity is a
useful tool for analysis of the pendulum motion. A graph of {w)
versus g as shown in Figure 4.23 should reveal phase-locked motion.
This figure complements the bifurcation diagrams of Figure 4.22. Two
sets of initial conditions were chosen, one from each basin of
attraction at g = 1.45, to illustrate positive and negative rotary modes.
The plateaus of (w) are indicative of phase locking; they correspond
to the periodic intervals of the bifurcation diagram. The regions in
which {w) varies erratically correspond to the chaotic state (Gwinn
and Westervelt, 1986).

Another approach to the study of phase locking is direct exami-
nation of the winding number for a range of forcing amplitudes, g. In
the diagrams of Figure 4.24 the winding number is shown for two
ranges of g. It is defined for the pendulum as

W= lim <9"_ O )

now \ 2TH

where n is the number of drive cycles. As in the previous diagrams
initial values were chosen from the two basins of attraction to show
positive and negative angular velocities. For each value of g an initial
motion corresponding to 50 drive cycles is discarded, and the next 30
cycles (n=30) of angular displacement are used to obtain W. The
features of these diagrams are essentially the same as those of the
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Fig. 4.23 Phase locking of the pendulum as revealed by the average angular
velocity {w) (in units of wp) as a function of the driving force amplitude g. Sets
of initial coordinates (8,,w,) were chosen from the two basins of attraction.

(b) Magnification of part of ().
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Fig. 4.24 Phase locking of the
as a function of driving am

pendulum as revealed by the winding number w

plitude g. Sets of initial coordinates were chosen from
the two basins of attraction, (b) Magnification of part of (a).
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Table 4.1. Correlation of dynamical behavior with winding number.
Behavior designated ‘chaotic(ma)’ indicates multiple chaotic attractors.
9=2 and wp=2

R Type of behavior Winding number

ange
g<1.085 periodic 0
1.085<g<1.11 chaotic(ma) ~0
1ll1<g<1.14 periodic 0
1.14<g1.22 chaotic scattered
g~122 periodic +%
1.22<g<1.26 chaotic scattered
1.26<g<1.28 chaotic(ma) ~+1
1.28<g<1.475 periodic +1
1475<g<1.485 chaotic(ma) ~+1
1.485<g<1.493 periodic +1
1.493<g<1.495 chaotic scattered
1495<g<1.497 periodic +%
g>1.497 chaotic scattered

—

graphs of {w) versus g, since both measure the average rotation rate,
using different computational schemes.

The graph of W versus g shows two types of behavior; (a) phase
locking with constant W for periodic pendulum states, and (b)
scattered values of W for chaotic states. The various types of behavior
detected as g increases, and the corresponding values of W, are shown
in Table 4.1.

In this chapter we have demonstrated that discrete mappings can
give insight into the complex behavior of the driven pendulum. In the
next chapter we examine various aspects of the fractal geometry
associated with chaotic motion,
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Problems

1. Use the listing LOGISTIC MAP in Appendix B or the option
LOGISTIC MAP from the CHAOS menu to study the logistic
return map. Try different values of the parameter 4 and different
initial values Xo.

2. Use one of the programs suggested in Problem 1 to study regions
where period doubling occurs. First look at the appropriate first
order return map and then generate higher order return maps
that correspond to the degree of period doubling. !

3. Using one of the programs suggested in Problem 1, generate a
bifurcation diagram for the logistic map. Expand the scale of Lin
order to magnify certain regions of the diagram. In particular,
expand the scale in a chaotic region and note that windows of
periodic behavior are more evident at the higher magnifications,

4. Expand the scale of u for a bifurcation diagram in the region of
period doubling, Try to observe many bifurcations and thereby
approximately verify the F eigenbaum number.

5. For the second bifurcation of the logistic map, the entropy, as
defined in the text, is constant over that region of u. What does
this fact imply about the distribution of points over the four
possible values of x, for that range of 4? Now assume that the
values of x, are tossed with equal probability into each of four
bins (out of a total of 40 bins). What is the entropy of this
situation? Compare your answer with that of Figure 4.10, and
suggest aninterpretation of the dia gramin that particular region.
Using the method of Lagrange multipliers or otherwise, prove
that the entropy function is a maximum when pi=1/N for all
values of . |

6. Another map which shares many properties of the logistic map is
the tent map:

e

Xnv1=2Px, for0<x<%:0<ﬁ<1
Xn+1=2B(1—x,) for L<x<1

Use either the TENT MAP option from the CHAOS menu or
your own modification of the listing LOGISTIC MAP in
Appendix B to generate some mappings and bifurcation dja-
grams of the tent map.
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7.

10.

11.

12,

13.

*+

Use one of the programs suggested in Problem 6 to generate a
plot of the Lyapunov exponent versus f for the tent map. Prove
analytically that the Lyapunov exponent is log.(28). Note that
the exponent becomes positive as f passes through 0.5, the initial
point of chaotic behavior.

In the chaotic region of the tent map it is possible to estimate how
many iterations are necessary before knowledge of the x coor-
dinate (with an initial uncertainty)is lost. If the uncertainty in the
coordinate after the nth iteration is ¢, then the uncertainty after
the n+ 1 iteration is

En+1= 8nelogez #

(This expression uses the Lyapunov exponent from Problem 7.) If
the initial uncertainty is ¢ how many steps does it require to have
an uncertainty equal to 1? (Answer: n=log,(1/e))

. Show that the logistic map (with u=4) with the variable X, may

be transformed to the tent map with the variable VYn. by the
coordinate transformation: y,,=(2/7i)sin“ L(x,%).

Using either the listing CIRCLE MAP in Appendix B or the
option CIRCLE MAP from the CHAOS menu generate the
standard map using various values of K and Q. Determine the
differing effects of each of these parameters on the shape of the
map. For what value of K does the map become noninvertible?
Using one of the programs suggested in Problem 10 generate
several versions of the Devil’s staircase. By appropriate scaling of
the coordinates examine the staircase at various magnifications.
The phenomenon of mode locking in the driven pendulum can be
examined by considering a modified version of the bifurcation
diagram. Instead of keeping wp constant and varying g, reverse
the operation and let wp, be the independent variable, for constant
g. (This requires the appropriate modification of the bifurcation
program.) Try g=1.46 for example and let wp, vary from 0 to 1.
You should observe that in the region where wp~ p/q for small
integer values of p and g, the pendulum locks onto a periodic
motion.

Horseshoes can be generated in a variety of ways. One example is
the baker’s transformation:

Xp+1=2X,, mod 1




